REDUCTION OF AMINO ACIDS TO AMINO ALCOHOLS. A COMPARISON OF VARIOUS METHODS WITH REGARD TO POTENTIAL RACEMIZATION

Graham S. Poindexter and A. I. Meyers*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (Received in USA 11 July 1977; received in UK for publication 18 August 1977)

The reduction of naturally occurring amino acids has been reported using lithium aluminum hydride, sodium borohydride and borane-dimethylsulfide-BF $_3$. Because of our need for chiral amino alcohols as reagents in asymmetric synthesis, we prepared S-leucinol using the borane reagent. However, comparison of the rotation of leucinol with that obtained using lithium aluminum hydride indicated a large variation although samples from the three reduction methods were determined to be >98% chemically pure (glc, nmr) (Scheme 1). The higher [α] for leucinol from the

borane reduction suggested that the other two methods may have proceeded with considerable racemization. That this was not the case was proven by $^{19}\text{F-nmr}$ of the Mosher amides (1) 8 which exhibited clean ^{19}F signal separations (~8 Hz) for racemic leucinol as its amide. 9 The leucinol derived from reduction of (S)-leucine using all three methods gave only a single sharp $^{19}\text{F-signal}$ indicating that none of these reduction methods was accompanied by any significant degree of racemization and the discrepancies in $[\alpha]_D$ are due to trace impurities. This technique has also been used to assess enantiomeric purities of other amino alcohols 10 derived from reduction of amino acids and the $^{19}\text{F-spectra}$ indicated no racemization regardless of the method employed. In most cases, however, the $[\alpha]_D$ varied from 50-200% suggesting that $^{19}\text{F-nmr}$ techniques are much more reliable than optical methods for determining % ee in this series of compounds. 10 ,11,12

	Reaction	¹⁹ F (CF ₃)	Integration
CH ₃ O// CF ₃ C N OH	(S)-leucine ethyl ester-HCl + NaBH ₄	688 Hz	99±1
	(S)-leucine ethyl ester + LiAlH ₄	688 Hz	99±1
1	(S)-leucine + BH ₃ ·Me ₂ S	688 Hz	99±1
	(R,S)-leucine ethyl ester·HCl + LiAlH ₄	682 Hz 690 Hz	1:1

NOTES AND REFERENCES

- National Service Research Award Postdoctoral Fellow (1976-1977).
- P. Karrar, P. Portmann and M. Suter, Helv. Chim. Acta, 32, 1156 (1948); ibid., 31, 1617 (1948).
- H. Seki, K. Koga, H. Matsuo, S. Ohki, and S. Yamada, Chem. Pharm. Bull. (Japan), 13, 995 (1965).
- C. F. Lane, U.S. Patent 3,935,280, Chem. Abstr., 84, 135101p (1976).
- A. I. Meyers, M. L. Druelinger, and D. R. Williams, \underline{J} . Am. Chem. Soc., 98, 3032 (1976). A sample purchased from Aldrich Chem. Co. had $\left[\alpha\right]_D^{20} = 4.80^\circ$ (neat) in our hands although the catalog lists $\left[\alpha\right]_D^{22} + 1.3^\circ$ (neat).
- We thank Dr. C. Lane (Aldrich) for a gift of BH3·Me2S for our studies.
- J. A. Dale, D. L. Dull, and H. S. Mosher, <u>J. Org. Chem.</u>, <u>34</u>, 2543 (1969); S. Yamaguchi and F. Yashura, Tet. Letters, 89 (1977).
- All samples were run at 94.1 MHz in acetone-d $_{\rm f}$ using TFA as an external standard. We thank Dr. R. M. Riddle (University of Minnesota) for these measurements.
- Similar studies were performed on valine, phenylglycine, and phenylalanine.
- The 13 C-nmr spectra were also examined and gave very small peak separation (\sim 0.1 ppm) which was not sufficient for meaningful integration on enantiomeric compositions.
- The hydrochloride salts of leucinol obtained from reaction a) and b) were repeatedly recrystallized (EtOH-Et $_2$ 0) and gave [α] $_D^{20}$ 10.7° and 11.1° (EtOH). The trace impurity from reaction a) was thus removed. The recovered leucinol then possessed [α] $_D^{20}$ 1.23° (neat).

Acknowledgement - We wish to express our appreciation to the National Science Foundation and the Petroleum Research Fund of the American Chemical Society for financial support.